Elemental and Environmental Chemistry Exam Questions

2005 Exam Question 1

굿
rD
е
ne
7
₫:
급
Ξ.
3
n n
ū.
12.
C
2
6
₹.
ba
귽
큺
8
ă
긆
Ħ
₫.
Si
9
30
Ď.
ä
The elements titanium and zinc make important contributions to modern society
Ω.
Ţ

		5		ភ
•		Thee		ident
1. Write an equation for the reaction of TiO2 with sodium hydroxide	TiO2 reacts with sodium hydroxide to form the ion TiO3 $^{2\text{-}}$	b. The element titanium occurs natural as the mineral form titanium dioxide TiO $_{ m 2}$	/1 mark	a. Identify the block of the periodic table to which titanium can be found

Commenced and the control of the con
properties:
2. Explain how this reaction indicates that titanium has some non-metallic
/2 marks

2006 Exam Question 2

Aura is a satellite that orbits the Earth. It collects data about molecules in the troposphere and the stratosphere.

a. The concentration of the oxides of sulfur and nitrogen in the troposphere are measured to determine their contribution to the formation of acid rain.

i.1. Write an equation for the reaction of SO_2 with water

	1
Describe how carbon dioxide acts to maintain a steady temperature in the troposphere	£.
The concentration of carbon dioxide in the troposphere is critical to life on Earth.	È
/1 mark	and the second s
ii. Identify one environmental problem, other than acid rain, that may result from the presence of oxides of nitrogen in the troposphere	
/2 marks	
Explain how the reaction of SO ₂ with water lowers the pH of rainwater	Expla
2. This reaction leads to the formation of acid rain.	2. 뀨
/2 marks	

/3 marks

,		
		i. State why both CO and CO_2 are present
т,	xhaust gases of motor vehicles tha	. CO and CO_2 are two oxides of carbon present in the exhaust gases of motor vehicles that surn hydrocarbon fuels.
	of carbon and oxides of nitrogen.	xhaust gases from motor vehicles may contain oxides of carbon and oxides of nitrogen.
		.006 Exam Question 6
	/1 mark	
Ŧ.	er resolution than the measuremer	tate how the measurement from Aura displays a greater resolution than the measurement rom the other satellite:
	253 units	concentration of ozone measured by other satellile
	253,9 units	concentration of ozone measured by Aura
		shown in the table below:
	nother satellite. The results are	
	was measured by Aura and	c. i. The concentration of ozone in the stratosphere was measured by Aura and
) to 1 () ()	
	/2 marks	
		Write an equation for photosynthesis.
	esis.	 Plants require carbon dioxide for photosynthesis.

/2 marks

Many different compounds are used to improve the quality of water.

a. Compounds of phosphorus can be used to soften water.

i. Write the electronic configuration of phosphorus, using subshell notation

∫2 marks

2006 Exam Question 12	Calculate the concentration of H^{\star} in the solution in the stomach	2006 Exam Question 7 ii. 1. The solution in the stomach has a pH of 2.1			b. NO and NO ₂ are two oxides of nitrogen present in the exhaust gases of motor vehicles that burn hydrocarbon fuels Explain with the aid of equations why both NO and NO ₂ are present:
/2 marks)mach		/4 marks		es of motor vehicles oth NO and NO ₂ are

Oxides of sulfur and nitrogen are major pollutants that contribute to the formation of acid rain in industrialised countries.

/2 marks	
3. State why the bond between \$ & O are polar: /1 mark 4. State why the molecule is polar /1 mark b.i. State one natural process that releases oxides of nitrogen into the atmosphere. /1 mark	wn the polarity of one bond, using
es of nitrogen into the atmosphere	ou've drawn above, shown the polarity of one bond, using a stween S & O are polar: le is polar le is polar ocess that releases oxides of nitrogen into the atmosphere
	ou've drawn above, shown the polarity of one bond, using atween S & O are polar: le is polar
	ou've drawn above, shown the polarity of one bond, using atween S & O are polar:
	ou've drawn above, shown the polarity of one bond, using
3. State why the bond between S & O are polar:	ou've drawn above, shown the polarity of one bond, using the polarity of the p
	ou've drawn above, shown the polarity of one bond, usin
On the diagram that you've drawn above, shown the polarity of one bond, using the appropriate convention:	
ii. 1. Draw a diagram to show the bonding and shape of a molecule of SO ₂ 2. On the diagram that you've drawn above, shown the polarity of one bond, using the appropriate convention:	ii. 1. Draw a diagram to show the bonding and shape of a molecule of SO2
1 mark ii. 1. Draw a diagram to show the bonding and shape of a molecule of SO ₂	· ·

	F
•	NO ₂ re
	acts
,	WITh
	Mule
	ater
:	to ton
	n the
	acid
	conta
	Builti
	NO2 reacts with rainwater to form the acid containing HNO3

Write an equation for this reaction

cid rain causes iron structures to deteriorate.
Identify one effect of acid rain on soil that reduces plant growth:
B. Many plants do not thrive under acid conditions.
Explanation:
/1 mark
Component:
A. Identify the component of this acid rain that improves soil for plant growth and explain your answer.
2 This acid rain affects plant growth in several ways.
/2 marks

iv. Ac

Write an ionic equation for the reaction of acid rain with iron.

/2 marks

/1 mark

Ancient coins often contain copper and silver.

- a. Many ancient coins were composed mainly of copper.
- i. Write the electron configuration of copper, using subshell notation

/2 marks

ii. Green spots on ancient coins contain the corrosion product, copper II ethanoate.

Write the formula of copper II ethanoate

/2 marks

 The ancient Romans discovered that copper coins dipped in molten silver chloride became coated with silver.

Write an equation for this reaction

/2 marks

2007 Exam Question 5

Combustion of fuels in vehicles leads to the formation of nitrogen oxides. The concentration of nitrogen oxides affects the concentration of ozone in the troposphere.

a. Write an equation for the formation of NO

/2 marks

b. NO, NO_2 and ozone are formed above a city street on a sunny day. The concentration of NO and ozone are shown in the graph below:

- When the concentration of ozone reaches 50ppb, its effect on living organisms can be observed.
- Using the graph above, identify the earliest time of day at which the effect of ozone on living organisms is likely to be observed.

/1 mark

2. State one harmful effect of ozone in the troposphere.

/1 mark

/3 marks	
Explain how this increase could lead to an increase in the average temperature of the Earth's atmosphere	b. Exp the
/1 mark	
Identify one major reason why the amount of carbon dioxide emitted into the atmosphere is increasing	a. Ider atm
The amount of carbon dioxide emitted into the atmosphere is increasing which has the potential to enhance the greenhouse effect.	The amoun potential to
2007 Exam Question 12	2007 Exam
/1 mark	·
2. Using the graph opposite, estimate the time of day at which the concentration of NO $_{\rm 2}$ reaches a maximum	
/4 marks	
	, ,
equations in your answer	
 Explain why, one a sunny day, the concentration of ozone reaches a maximum after the concentration of NO reaches a maximum. Include two relevant 	;=:

Catalytic converters reduce the amount of poliutants emitted from motor yehicles that use carbon-based fuels. a. Several pollutants are produced in the engines of motor vehicles.	emitted from motor vehicles that use of motor vehicles.
i. Explain how NO is produced in the engines of motor vehicles	f motor vehicles
	/2 marks
II. Explain why CO is produced in the engines of motor vehicles	f motor vehicles
	/2 marks
iii. State and explain one disadvantage that unburned hydrocarbons in the emissions from a motor vehicle may have for the owner of the vehicle	burned hydrocarbons in the emission of the vehicle

/2 marks

- b. In the production of copper, large amounts of SO_2 are produced when the sulfide moderal isroasted at high temperatures.
- i. The release of SO_2 into the atmosphere may lead to the formation of acid rain.

Describe with the aid of two equations, how the release of SO₂ into the atmosphere lowers the pH of rainwater:

1		İ	
ļ			
	;		

2009 Exam Question 7

/4 marks

The concentration of GH gases in the Earth's atmosphere is increasing

average tempterature of the earth's atmosphere: a. Explain how an increase in the concentration of GH gases may lead to an increase in the

/3 marks

- 5 Farming practices are responsible for the emission of large amounts of GH gases GH gas emissions. such as CO₂ CH₄ into the atmosphere. Various methods can be used to reduce these
- 1. Growing animal feed involves the process of photosynthesis

Write an eqaution for the process of photosynthesis

/2 marks

2. Explain one way in which CO_2 emissions can be reduced by growing animal feed on the farm instead of thrasporting it from other places

/2 marks

ii. CH4 emissions from cows can be reduced by modifying a protein in cows.

Sections of adjacent protein chains in one unmodified piece of protein are shown in the diagram below.

the diagram above: State the type of interaction between the protein chains that is indicated by the arrow on

/1 mark

1

Acidic soils are causing serious environmental problems in many	2009 Exam Question 9
oroblems in n	
lany	

When waterlogged soils, rich in FeS₂ are exposed to air, they become acidic as a result of the formation of H_2SO_4

-
-T
12
Σ.
\sim
Ξ
≓
Ο.
<u>o</u> :
=
W)
Ď.
7

ı. H ₂ SO4 mobilised Al ³⁺
Q)
Ω
~
90
Ņ
\mathbb{I}^{3+} and Mg $^{2+}$ from clays into the
=;
0
⇉
0
61
~
Ui.
₹.
- 5
U
끅
īō.
Lo.
Ö
==
۶
ã
닭
벁
Ω.
5
Ω_
==:
7
²⁺ from clays into the soil water and into waterways.
5
ຄົ້
7
뜨
rwa
മ്
<
Ÿ

-
∇
<u>u</u>
≌.
ō
₹
Ŧ.
S
4
Explain how H ₂ SO ₄ mobilises Al ³⁺ :
유
≝
95
ξή.
25
+
and Mg ²⁺ from
Ð.
≟
90
⇒
0
=
읈
₹
Ξ.
줁
6
₫,
+from clays into soil wate
ě.
6
•

/2	
/2 marks	

domestic use. ii. In addition to their many uses in nature, waterways are a potential source of water for

waterways: State one reason why it is undesirable for Al^{3+} and Mg^{2+} to be mobilised from clays into

	Mg ²⁺		
;			
		İ	
	·		
/2 marks			
ir G		l	

? The final pH of the reaction solution water 1.5

Calculate the concentration in $\operatorname{molL^{-1}}$ of $\operatorname{H^+}$ in the reaction solution.

/2 marks

Ë	Explain one advantage of repeating this procedure on several samples of the same soil
2010 E	2010 Exam Question 3
Over t	Over the last century, there has been a considerable increase in the use of titanium. The main source of titanium is in the mineral rutile, ${\sf TiO}_2$
ឆ	Explain why TiO $_{\mathrm{z}}$ is a solid with a high melting point
	. /2 marks
à	TiO ₂ reacts with hydrochloric acid
	Write an equation for this reaction
P	/2 marks In the production of titanium, TiO $_2$ is treated with coke and chlorine gas to form titanium tetrachloride TiCl4
	Draw a diagram to show the bonding and shape of the CCL molecule

H

Arsenic, which is toxic is found in drinking water in some places. Arsenic-rich groundwater can be treated by the SORAS method. In this process the arsenic is oxidised to form products that are adsorbed onto the surface of iron III oxides in the groundwater.

a. Iron III oxides contain the Fe³⁺ion.

S
٠.,
Ξ.
H.
m
٠.
☲.
_
ന
_
fν
ѫ
ш.
<u>11</u>
=
7
\simeq
_
Ξ,
.,
8
Ċ.
≍
-:
= 77
 TO.
2
=
ωì.
۳.
₩,
0
∹
_
\circ
=-
and to
\pm
_
m.
_
ıυ.
4
ᅙ
=
v
⊐
ion using
\sim
=
=
UЦ
in
~
=
ပ
S
_
ಕ
ᆵ
Ē
nei n
nell no
nell not
nell nota
nell notat
nell notati
nell notatio
rt

/2 marks

b. Arsenic in the groundwater is in the +3 oxidation state in the form of uncharged arsenous acid H_2AsO_3 : in the SORAS method, it is oxidised to the +5 state and is in the form of ions H_2AsO_4 :

i. Arsenous acid is formed when arsenic III oxide reacts with water.

Write an equation for this reaction

/2 marks

2011 Exam Question 12

Increasing the concentration of atmospheric CO2 has been associated with global warming.

a. Carbon and oxygen form CO_2 molecules. Although they contain polar covalent bonds, the molecules are nonpolar.

i. Explain why the covalent bonds in CO2 are polar

	į	
		ĺ
_/2 marks		
ark I		
S		

/2 marks	ter property and anomaly and planting applications, and property and anomaly anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly and anomaly anomaly and anomaly anomaly and anomaly anomaly anomaly anomaly and anomaly and anomaly a
	ii. Explain why the CO ₂ molecules are nonpolar

c. It has been suggested that the oceans have absorbed more than half of the carbon dioxide generated by human activity in the last two centuries. Carbon dioxide dissolves in water and is used by marine organisms for photosynthesis. However, the capacity of the oceans to absorb carbon dioxide is limited. Furthermore, absorption of carbon dioxide by the oceans may have negative environmental consequences in the long term.

Discuss the present-day benefit of the oceans' absorption of carbon dioxide and the possible long-term environmental consequences for the oceans. You may use one or two equations in your answer:

				•		1		1			
							ĺ	l			
								l			
				ŀ				l			
		į .		i			i	l	i		
				i			i	l			
	1			1				l			
								l			
				!	1			l			
				1				l	ì		
				!				l			
	i i			l				l			
	1							l			
								l			
								l			
								l			
		ĺ		1				l			
			i					l			
								l			
								l			
								l			
								l			
				[l :			
								l :	i		
- [i				i :			
- ('										
- 1										1 1	
- 1											
- 1				ì							
- 1											
- 1					i						
- 1											
ı											
ļ											
- 1											
- 1											
- 1											
- 1				1							
- 1											
- 1								i		i	
- 1					1						
- 1											
- 1											
- 1											
- 1										! !	
- 1											
- 1					1			1			
- 1										l l	
- 1											
- 1											
- 1	j										
- 1											
- 1											
- 1	p)										
- 1	- 2										

/8 marks