Question 1		Marks	Comments
(a)	Ester	1	
(b)	Esterification or Condensation	1	
(c) (i)	Ethane-1, 2-diol or 1, 2-ethanediol	2	
(ii)	More than one hydroxyl group	1	
(iii) (1)	HO-CH ₂ -CH-CH ₂ -OH or HO OH OH	2	 Note: Take care when drawing or copying structures. Be careful with the positioning of the bonds
(2)	 [Any one point:] Increase in rigidity Less flexible Higher m pt Increase in hardness 	1	Note: Must be a physical change.
(d)	Ethanal	2	
(e) (i) (ii)	 [Any two points:] Plants are renewable resource whereas petroleum is a finite resource More plants grown (use CO₂) therefore reducing CO₂ levels in the atmosphere Saves on petroleum consumption therefore petroleum available for other uses Saves on petroleum consumption therefore conservation of finite reserves Polymer being made is still PET (i.e. same compound) 	2	Note: Must be benefit
(11)	 Polymer being made is still PET (i.e. same compound with the same chemical and physical properties Therefore no effect as PET is non-biodegradable 	2	
	Total	14	

Suggested Stage 2 Chemistry 2014 SACE Board of SA Exam Solutions

Question 2		Marks	Comments
(a)	р	1	Note: Must be lower case letter
(b)	$Bi_2O_3 + 6H^+ \rightarrow 2Bi^{3+} + 3H_2O$	2	Note: 1 mark for correct species 1 mark for balancing
(c)	$\begin{array}{c} \begin{array}{c} CH_{3} \\ \downarrow \\ CH_{3} - C - CH - CH_{3} \\ 0 \\ O \end{array} or \downarrow \\ O \\ O \\ O \end{array}$	2	 Note: Take care when drawing or copying structures. Be careful with the positioning of the bonds
(d) (i)	See graph below on following page	5	
(ii)	Scatter of the points above and below the trend line.	1	 Note: regular and suitable scales on both axes correct plotting of points line of best fit
(iii)	9.3 - 9.6	1	Note: Units not needed
(iv)	 Bi³⁺ absorbs unique / specific / characteristic wavelengths / frequencies of light (to excite its electrons to higher energy levels). Bismuth lamp emits specific wavelengths / frequencies capable of being absorbed by the Bi³⁺ ions only. Other trace elements present would require different energies and thus absorb different wavelengths / frequencies of light 	3	Note: Must refer to electron energy levels in bismuth / unique electron configuration for full marks
L	Total	15	

Question 3		Marks	Comments
(a)	0 = S = 0 or $0 = S = 0$	2	
(b) (i)	 decrease in pH means [H⁺] increases equilibrium shifts to right to counter change (Le Châtelier's principle) therefore [SO₂] increases 	3	
(ii)	Endothermic	1	
(c) (i)	Distilled water	1	
Significant Figure mark	Answers to parts (ii) and (iii) must be 3 significant figures	1	Note: Significant figures mark <i>only</i> applies to parts (ii) and (iii)
(ii)	$n_{SO_2} = c \times v$ = 4.76 x 10 ⁻³ x 0.0200 mole ratio SO ₂ : I ₂ is 1 : 1 $n_{I_2} = 4.76 \times 10^{-3} \times 0.0200$ = 9.52 x 10 ⁻⁵ $V_{I_2} = \frac{n}{c}$ = $\frac{9.52 \times 10^{-5}}{0.0120}$ = 7.933333 x 10 ⁻³ L = 7.93 mL	4	 Note: Should show full working in calculations. Units must be shown in final answer as not specified in question.

(iii)	$\begin{array}{l} 4.76 \ \mathrm{x} \ 10^{-3} \ \mathrm{mol} \ \mathrm{L}^{-1} = 4.76 \ \mathrm{x} \ 10^{-3} \ \mathrm{x} \ M_{SO_2} \ \mathrm{g} \ \mathrm{L}^{-1} \\ = 4.76 \ \mathrm{x} \ 10^{-3} \ \mathrm{x} \ (32.06 + 2 \ \mathrm{x} \ 16.00) \\ = 0.3049256 \ \mathrm{g} \ \mathrm{L}^{-1} \\ = 305 \ \mathrm{mg} \ \mathrm{L}^{-1} \\ \mathrm{which} \ \mathrm{is} > 250 \ \mathrm{mg} \ \mathrm{L}^{-1} \end{array}$	3	Note:Should show full working in calculations.
	Total	15	

Question 4		Marks	Comments
(a)	$C_2H_5SH_{(l)} + \frac{9}{2}O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(l)} + SC_{2(g)}$	$\Delta H = -2$	2173 kJ
		4	Note: 1 mark for correct species 1 mark for balancing 1 mark for states 1 mark for ΔH
(b) (i)	 Rate increases Increased frequency of successful collision 	2	Note: Must mention rate increases for full marks
(ii) (1)	1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 3d ⁷ , 4s ²	2	Note: correct convention: (s, p, d etc and superscripts)
(2)	 lowers activation energy for reaction, [Any two points:] Provides an alternative reaction pathway More particles with E > Ea Higher frequency of successful collisions 	3	Note: Must mention lower activation energy for full marks
(3)	 [Any two points:] Same rate can be achieved at a lower Temperature Less fuel / energy needed to attain or maintain reaction system Reduced cost as less energy required 	2	
(iii)	$\begin{array}{rcl} CH_3NH_2+H_2S \ \rightarrow \ CH_3NH_3^++HS^- \\ or \\ 2CH_3NH_2+H_2S \ \rightarrow \ 2CH_3NH_3^++S^{2-} \end{array}$	2	Note: 1 mark for correct species 1 mark for balancing
(iv)	$SO_2 + 2H_2S \rightarrow 2H_2O + 3S$	2	Note: 1 mark for correct species 1 mark for balancing
	Total	17	

Question 5		Marks	Comments
(a) (i)	C ₆ H ₆ Cl ₆	2	
(ii) (1)	 [Any one point:] Carbon and chlorine have different electronegativities Chlorine has a higher electronegativity than carbon Chlorine and carbon have different electron attracting powers And [Any one point] Electrons are not shared equally Chlorine has greater control of bonded electrons 	2	Note: 1 mark for comment on electronegativity <i>and</i> 1 mark for discussing position of electrons
	• Electrons spend more time around Chlorine atom		
(2)	 [1 mark for:] molecule is symmetrical and polar bonds are arranged so that [Any one point:] bond dipoles / polarities cancel out there is an even distribution of charge there is no separation of charge the centre of positive charge coincides with centre of negative charge vector sum of dipoles is 0 	1 + 1	Note: Need to make reference to symmetry and arrangement of bonds
(3)	14 ng per kg ∴ 14 x 70 ng in 70 kg = 980 ng = 980 x 10 ⁻³ µg = 0.98 µg	2	 Note: Should show full working in calculations. Units not needed as given in the question
(b) (i)	 Chromatography Principles: Chromatography separates substances according to polarity components in mixture to be separated have different attraction to /adsorption to stationary phase components have different attraction to / solubility in mobile phase Polarity Differences: attraction to SP/MP depends on polarity of molecule components have different polarities Separation: components move at different rates over stationary phase components separate movement of components can be compared to a known standard identification of components based on their R₆ values / retention times 	4	Note: Must refer to all three headings, and at least two points in one heading for full marks

(ii) (1)	4.5 — 4.8 mins or 4:30 – 4:50 minutes and seconds	1	 Note: Units must be shown in answer as not specified in question.
(2)	Aldrin is less polar than lindane	1	
	Total	14	

Question 6		Marks	Comments
(a) (i)	 Nature of CO₂: CO₂ is s nonmetallic oxide and therefore is acidic CO₂ reacts with water in atmosphere to produce carbonic acid H₂CO₃ CO₂ + H₂O → H₂CO₃ CC₂ + H₂O → H₂CO₃ Acidity of H₂CO₃: Carbonic acid is weak acid ionizes H⁺ is produced CO₂ + H₂O → H⁺ + HCO₃⁻ 	2	 Note: Answer must include minimum of one sentence. Acid formed needs to be named. Equations not necessary for full marks,
(ii)	Burning coal / fossil fuels containing sulfur releases sulfur dioxide (SO ₂) and sulfur trioxide (SO ₃). These are acidic oxides which react with water forming sulfurous (H ₂ SO ₃) and sulfuric acid (H ₂ SO ₄) <i>or</i> Roasting sulfide ores releases sulfur dioxide (SO ₂) and sulfur trioxide (SO ₃). These are acidic oxides which react with water forming sulfurous (H ₂ SO ₃) and sulfuric acid (H ₂ SO ₄) <i>or</i> Combustion of refined fuels petrol / diesel releases nitrogen oxides (NO _x in particular nitrogen dioxide NO ₂) NO ₂ is an acidic oxide which reacts with water forming a mixture of nitrous and nitric acid	3	Note: Must identify the activity, the gas involved and the explanation for the effect for full marks
(b) (i)	carbon dioxide (CO ₂) methane (CH ₄)	2	Note:Name or formula acceptable.

(ii)	 Burning fossil /C-based fuels releases more CO₂ Deforestation causes release of more CO₂ Landfill causes release of more CH₄ Keeping more sheep cattle causes release of more CH₄ Growing more rice causes release of more CH₄ Coal mining causes release of more CH₄ 	2	Note: Must identify the human activity, and the gas involved for full marks
(c)	 Human activity (Any One): Increased combustion by cars / power stations Land clearing by fire Explanation: High temperatures causes N₂ to react with O₂ to form nitric oxide (NO) NO reacts further with O₂ to form NO₂ Possible Equations: N₂ + O₂ → 2NO 2NO + O₂ → 2NO₂ Action to reduce (Any One): Catalytic converters on cars, which convert NOx to N₂ Greater use / better public transport system therefore less NO_x released 	7	 Note: Be careful to answer the question <i>ie two parts need to be addressed</i>: (1) Human activity and how human activity contributes to increase in NO_x (2) One action to reduce NO_x (1) Human activity contributes to increase in NO_x (2) One action to reduce NO_x (2) One action to reduce NO_x (2) One action to reduce NO_x (3) One equation (<i>at least</i>) must be included in your answer (1) Does not have to be balanced and is worth one mark) Plan your answer on scrap paper before writing. 6 marks are allocated for chemical content (including one mark for the equation). Two marks are allocated for communication skills including grammar, spelling and writing in sentences.
	Total	16	-

Question 7		Marks	Comments
(a)	 increases surface area / subdivision / smaller particles increases reaction rate 	2	
(b)	oxygen or O ₂	1	Note: Name or formula acceptable.
(c)	 [Any one point:] Ions compete for oxygen / oxidised in preference to Au Ions other than Au react with O₂ Less O₂ is available for Au 	1	
(d)	$H-C\equiv N$	2	
(e) (i)	negative	1	
(ii)	 [Any one point:] Mg²⁺ is attracted to the carbon. Mg²⁺ more strongly attracted to the carbon than MgAu(CN)₂⁺ Mg²⁺ competes with the MgAu(CN)₂⁺ to bind with the carbon. Mg²⁺ is more highly charged than MgAu(CN)₂⁺ [Any one point:] Mg²⁺ displaces the MgAu(CN)₂⁺. from the carbon. Equilibrium is set up between Mg²⁺ and the MgAu(CN)₂⁺ Mg²⁺ higher preference than MgAu(CN)₂⁺ 	2	
(f) (i)	negative	1	
(ii) (1)	$\operatorname{Au(CN)}_{2}^{-} + \mathbf{e}^{-} \rightarrow \operatorname{Au} + 2\operatorname{CN}^{-}$	1	Note: Must be completely correct for mark.
(2)	reduction	1	
(3)	+1	1	Note: Must include + sign for mark.
(g) (i)	$Zn + 2Au^+ \rightarrow Zn^{2+} + 2Au$	2	Note: 1 mark for correct species 1 mark for balancing
(ii)	 [Any one point:] reducing agent Zn donates electron/s 	1	
	Total	16	

Question 8		Marks	Comments
(a) (i)	hydroxyl <i>or</i> hydroxy <i>or</i> alcohol <i>or</i> alkanol <i>and</i> amino <i>or</i> amine	2	
(ii)	Polyhydroxyl Aldehyde or ketone group present in other (chain) form	2	
(iii) (1)	(iii) (1) CH_2O	1	Both δ - and δ + must be shown for mark
(2)	$H \xrightarrow{\delta^{-}}_{O} H H$ $H \xrightarrow{\delta^{+}}_{H} N \xrightarrow{\delta^{-}}_{H} H$		
	H^{+} H^{+} (iii) (2) δ_{+} O_{-} H^{-} hydrogen bond	2	
(b) (i)	$\begin{array}{c} \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ NH_2 \end{array} \\ \\ \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ NH_2 \end{array} \\ \\ \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ NH_2 \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ NH_2 \end{array} \\ \\ \end{array} \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ OH \\ OH \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} $ \\ \\ \begin{array}{c} CH_2OH \\ OH \\ OH \\ OH \\ OH \\ OH \\ OH \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\	1	
(ii) (1)	enzyme	1	
(2)	 Secondary interactions (e.g. dispersion forces / dipole-dipole and H-bonding) affected at high temperature as weak forces Protein's 3D shape changes Ability to catalyse reaction is reduced by change in shape of active site 	3	
(3) A	Gives out heat	1	
(3) B	Less than 0	1	
	Total	14	

Question 9		Marks	Comments
(a) (i)	M _{Butane} = 4 x 12.01 + 10 x 1.008 = 58.12 Therefore 2874000 J produced by 58.12 g ∴ 600000 J produced by 58.12 × $\frac{600000}{2874000}$ = 12.1336 g	3	Note: Each error -1.
(ii)	$\begin{array}{l} 600 \text{ kJ} = 6 \text{ x } 10^5 \text{ J } \Delta \text{T} = 100 - 27 = 73^\circ \text{C} \\ \text{Energy change (or q)} = m_{\text{H}_{20}} \text{ x } \text{C x } \Delta \text{T} \\ 6 \text{ x } 10^5 = m_{\text{H}_{20}} \text{ x } 4.18 \text{ x } 73 \\ m_{\text{H}_{20}} = \frac{600000}{4.18 \text{ x } 73} \\ = 1966 \text{ g} \end{array}$	3	Note: Units required as not mentioned in the question.
(iii)	 [Any two reasons with relevant explanation:] Heat lost to surroundings and equipment. Therefore not all heat goes into the water. Incomplete combustion of butane. Therefore not all heat released from the fuel. Heat lost from water surface as it is heated. Therefore less heat remains in water. Evaporation of some fuel. Therefore no heat generated from evaporated fuel. 	4	
(b)	$C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2$	2	Note: 1 mark for correct species 1 mark for balancing
(c)	 Ethanol is a polar molecule capable of forming hydrogen bonds with other ethanol molecules Butane molecules are non polar and only weaker dispersion forces occur between butane molecules. Therefore more energy required to separate ethanol molecules from each other than butane molecules due to stronger secondary interactions. 	3	
	Total	15	

Question 10		Marks	Comments
(a)	Amide or peptide	1	
(b) (c)	H_3C CH or H_2N COOH H_2N COOH	2	 Note: Take care when drawing structures. Be careful with the positioning of the bonds.
	more NH ₂)	-	
(d) (i)	$\stackrel{\oplus}{}_{NH_3}{}$ or CH_3 — CH_2 - $\stackrel{\oplus}{NH_3}$	2	 Note: Take care when drawing structures. Be careful with the positioning of the ⊕, must be over N atom
(ii) (1)	 C- terminal positively charged in acidic environment. Therefore attracted to negatively charged phosphate in phospholipid. 	2	
(2)	 Less amino groups means less positive charge in acid environment. Therefore less strongly attracted to negatively charged phosphate in phospholipid. 	2	
(e) (i)	Synthetic polymers reduce the effects of toxic mellitin on mice <i>or</i> Synthetic polymers reduce the effects of bee venom (which contains toxic mellitin) <i>or</i> Synthetic polymers help mice to survive bee venom (which contains toxic mellitin)	2	Note: • Need to mention polymer <i>and</i> mice (effects on / survival)
(ii)	Recovery rate of mice or Rate of survival of mice or Death rate of mice	1	
(iii)	 [Any one point:] Size of dose / concentration of melittin Size of dose / concentration of synthetic polymer Strain of mice All mice injected at same time 	1	
	Total	14	

Question 11		Marks	Comments
(a) (i) (1)	HO O N O	1	
(2)	Capsaicin has a large non-polar end Nonpolar end soluble in nonpolar fatty component of milk	2	
(ii)	$ \overset{\Theta}{\longrightarrow} \overset{\Theta}{\longrightarrow} \overset{\Theta}{\longrightarrow} \overset{\Theta}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\rightarrow} \overset{O}{\rightarrow} \overset{O}{\rightarrow} \overset{O}{\rightarrow} \overset{O}{\rightarrow} \overset{O}{\rightarrow} \overset{O}{\rightarrow} \overset{O}{\rightarrow} \overset{CH_3}{\rightarrow} C$	2	 Note: Take care when drawing structures. Be careful with the positioning of the bonds. Make sure correct number of carbon atoms.
(b)	Vanillin contains aldehyde group Therefore will silver mirror observed with Tollens'reagent Capsaicin contains no aldehyde group therefore no reaction with Tollens' reagent	4	
(c) (i)	$Rf = \frac{distance\ travelled\ by\ B}{distance\ travelled\ by\ mobile\ phase} = \frac{41\ mm}{48\ mm} = -0.85$	2	
(ii)	Identity: A is vanillin Reasons: A has travelled the shortest distance or A has been most attracted to the polar stationary phase A must be the most polar constituent or Vanillin has the greatest number of polar groups	3	
L	Total	14	

Question 12		Marks	Comments
(a) (i)	increases	1	
(ii)	4.6	1	
(iii)	From the graph at pH = 5.5 Al ³⁺ = 9%, Al(OH) ₂ ⁺ = 65% Al ³⁺ + Al(OH) ₂ ⁺ = 74% Therefore Al(OH) ²⁺ = 100 - 74 = 26%	2	 Note: Ensure all working clearly shown Ensure correct line is used at pH = 5.5.
(iv)	$\begin{array}{rcl} \mathrm{Al}(\mathrm{OH})^{2+} + \mathrm{H}^{+} &\leftrightarrows & \mathrm{Al}^{3+} + \mathrm{H}_{2}\mathrm{O} \\ or \\ \mathrm{Al}(\mathrm{OH})^{2+} + \mathrm{H}_{3}\mathrm{O}^{+} &\leftrightarrows & \mathrm{Al}^{3+} + 2\mathrm{H}_{2}\mathrm{O} \end{array}$	2	
(v) (1)	85% of Al is present as Al^{3+} [Al ³⁺] = 0.85 x 43 µmol L ⁻¹ = 36.55 µmol L ⁻¹	2	
(2)	$pH = -\log [H^+]$ [H ⁺] = 10 ^{-pH} = 10 ^{-4.2} = 6.3 x 10 ⁻⁵ mol L ⁻¹	2	Note: Units required as not mentioned in the question.
(3)	reduces concentration of Al ³⁺ or less Al ³⁺ present therefore less damage to crop	2	
(b) (i)	Covalent or polar covalent	1	
(ii)	+3 + (3 x + 4) + (x x - 2) = -1 +3 + 12 -2x = -1 -2x = -1 -3 - 12 = -16 x = 8	1	
(iii)	K ₃ Na(AlSi ₃ O ₈) ₄	2	
	Total	16	